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RESEARCH AND DEVELOPMENT O F  A 

SONIC BOOM SIMULATION DEVICE 

By Roger Torriboulian 

General  Applied  Science  Laboratories, Inc.  
A Subsidiary of The Marquardt  Corporation 

INTRODUCTION 

Growing concern  has  been  voiced  about  the  various  effects 
due to   t he   son ic  boom generated by supersonic   a i rc raf t .  Much 
of the  character  of  the boom response i s  presently  unclear,  
espec ia l ly  i n  regard  to   the  inf luence on the  boom of   t e r ra in ,  
buildings and bui lding  mater ia ls ,  and atmospheric  interaction. 
The need for  a laboratory  type  simulator  to  generate  sonic 
booms has  been  recognized. 

Ideally,  such a simulator  should  be  capable of reproducing 
boom signatures  of  varying  shapes,  with  variable  pressure 
amplitudes and durations and be  capable  of  changing  these  para- 
meters i n  a simple and predictable  manner. I n  addition, a 
proper  simulation would also  provide  that   the   pressure wave be 
a t rave l ing  wave with  the  correct   veloci ty   corresponding  to   that  
produced by supersonic  transport .  Because many problems  involv- 
ing s t ruc tura l   mater ia l s   requi re  numerous tests i n  order   to  
obtain a s ta t i s t ica l ly   va l id   conclus ion ,   the   opera t ion   of   the  
simulator  should  be  economical on a per  shot  basis.   Further,  it 
would be highly  desirable   that   the   laboratory  device  be  able   to  
reduce  the  signature  wavelength so t h a t  many t e s t s  can  be  per- 
formed using  scale models  which would allow  obvious  cost  savings 
and extend  the  research  potential .  

To  fu l f i l l   these   requi rements   for  a sonic boom simulator,  
a p i l o t   f a c i l i t y   u s i n g  an a i r   supply ,  a mass control  valve,  and 
a horn  (or  duct) was successful ly   constructed and operated. The 
purpose  of  the  present s tudy  was to   fur ther   deve lop   th i s  method 
of  sonic boom simulation and t o  advance the  understanding of the 
technology  involved. The i n t e n t  was t o  extend  the  technique t o  
a l a rge r ,  more useful   faci l i ty   s ize .   Also  included w e r e  improve- 
ments i n  valve  design,  duct  wall   structure,  and duct  terminal 
absorber. 



To consider some of  the  problems  associated  with  the  sonic 
boom f a c i l i t y ,  an i n i t i a l   s t u d y  was  made of  the  various  para- 
meters  governing  operations  to  simulate  sonic booms. From t h i s  
study a design was i n i t i a t e d   f o r  a large  fas t -act ing  plug  valve 
to   con t ro l   t he  mass flow. A conical  duct made of  reinforced 
concrete,  a control   bui lding,  and the  hydraul ic  and  pneumatic 
systems  required  to  operate  the  device were  designed and  con- 
s t ructed.   After  an extensive program of  analysis  of  the end 
ref lect ion  condi t ions,  a unique  solution was developed  which 
permit ted  the  cancel la t ion of the  outgoing wave without  the 
need  of a la rge   c lass ica l   absorber .  The concept  of  this end 
termination i s  based on t h e   f a c t   t h a t   t o  match the  complex 
acoustical   admittance  present  at   the end  of the  duct,  both  the 
r e s i s t i v e  and i n e r t i a l  components of the  pressure wave must be 
cancelled.  

From th i s   t heo re t i ca l   ana lys i s  an engineering program was 
conducted so tha t   the   requi red   mater ia l  and fabricat ion  tech-  
niques  could  beident i f ied.   After  an extensive  search  to   locate  
the   cor rec t   res i s t ive   type  of mater ia l ,  a su i tab le  compromise 
mater ia l  was selected and the   spec ia l  moving absorber was 
fabricated.  The i n i t i a l   r e s u l t s   o b t a i n e d   u s i n g   t h i s  impedance 
matching  device on the end of the  duct,   while  not  perfect ,  
indicate   that   the   approach i s  conceptually sound  and t h a t  a 
simulator  device  of  .reasonable  length can  be made and yet  pro- 
duce ful l -scale   sonic  boom signatures .  The following 
sec t ions   o f   th i s   repor t  w i l l  d e t a i l   t h e  work outlined  above, 
and w i l l  d i s cuss   t he   i n i t i a l   r e su l t s   ob ta ined  from t h i s  new 
f a c i l i t y .  The report   a lso  indicates   the  technique  that   could 
be  used i n  performing  various  research  tasks  with  the  facil i ty.  
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LIST OF SYMBOLS 

speed  of  sound 

e l a s t i c   sp r ing   cons t an t   (pe r  u n i t  area)  

Mach number 

absolute  pressure  (see  subscript   note) 

pressure  of "boom"  wave 

rad ia l   coord ina te  

f r ic t iona l   res i s tance   (per  u n i t  area)  

viscous  res is tance  (per  u n i t  a rea)  

surface 

time 

ve loc i ty   ( rad ia l )  

pis ton  veloci ty  

mass flow  rate 

Y spec i f i c   hea t ,   r a t io  

UJ angular  frequency 

R cone sol id   angle  

P density 

(5 absorber mass (per u n i t  area) 

7 time  coordinate  associated w i t h  wave 

7 period  of  wave' 
0 
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Subscripts 

0 ambient  atmospheric  conditions 

co plenum or   reservoi r   condi t ions  

e r e l a t e s  t o  an a rb i t r a ry   r e f e rence   s t a t ion  
near  the end of  the  duct 

i r e l a t e s   t o  shock in t e r f ace  

1 relates   to   condi t ion  upstream  of   the 
shock in t e r f ace  

r r e f l ec t ed  wave 
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GASL-NASA SIMULATOR FACILITY 

A s  a f i r s t   s t e p  i n  the  design  of a new and l a r g e r   f a c i l i t y  
a comprehensive analysis  of  the  physical   parameters was under- 
taken.  Although  the  results  obtained from t h e   p i l o t   f a c i l i t y  
indicated  that   the   general   operat ion  of   the  s imulator  was con- 
ceptua l ly   cor rec t ,   the   ana lys i s  i s  useful i n  point ing  out   the  
var ious  l imitat ions and poten t ia l   t rouble   a reas   tha t  may be 
encountered when the  design i s  extrapolated.  Hence, i n  
Appendix A i s  described a semi-rigorous  examination  of  the 
phenomena assoc ia ted   wi th   th i s   s imula tor  which l e a d s   t o  a more 
complete  understanding of i t s  fundamental  operation. 

Based on t h i s   a n a l y s i s  a sonic boom simulator was b u i l t   a t  
GASL. A schematic  of  the  f inal   configuration i s  shown i n  
Figure 1. Of in t e re s t   he re   a r e   t he   t h ree  main components of 
the  s imulator ,  namely the mass control  valve,   the  conical  duct 
and the  cone termination  (absorber).  A photograph of someaspects 
of  the  simulator i s  presented i n  Figure 2 .  

Conical Duct 

The basic  construction  of  the  conical  duct was  made t o  be 
extremely  r igid so tha t   t he re  would be no loss of wave energy 
t o  the  walls.  Consequently, u s ing  standard  design  with  an 
addi t iona l   fac tor ,   the   resu l t ing   wal l   th icknesses  showed t h a t  
8"  of 3000 lb  reinforced  concrete  could  provide  the  required 
degree of r i g i d i t y .  Although the  strength  requirements  of  the 
walls  diminish  towards  the  small end  of the  cone,  for  ease of 
construct ion  the  ent i re  pyramid was made with  uniform  walls. 
The 100 f t .   long   duc t  was  made i n  three  pieces   with  sealed 
expansion  joints between them. The ha l f  cone  angle was taken 
to  be  about 2% as  a conservative  f igure so t h a t  no problems 
involving  separation  of  the  flow would e x i s t .  

0 

Every e f f o r t  was made to   maintain  the  precis ion  of   the 
duct.  Measurements indicate   that   the   divergence from l i n e a r i t y  
i s  on the  order   of  1/4" a t   the   cen ter   o f   the   span .  I t  is  l i k e l y  
that   such a small  perturbation would not   inf luence  the  basic  
operation  of  the  simulator.  

5 
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Valve 

Fundamental t o   t he   ana lys i s  i n  Appendix A i s  the  concept 
t ha t   t he   gas  mass flow w i l l  be  controlled (by a valve) as a 
function  of t i m e  a t   t h e   s o n i c   o r i f i c e   l o c a t e d   a t   t h e   o r i g i n   o f  
the  conical   duct .  

The basic  requirement  of  the  valve mechanism i s  t h a t  it be 
able   to   prescr ibe a mass flow  function  of t i m e  a t  a posi t ion rc 
downstream of   the   th roa t   a rea .   I f   the   va lve  and t r a n s i t i o n   t o  
the  conical   duct   are   designed  such  that   the   valve i s  the   l imi t ing  
o r i f i c e  i n  t h i s  flow  system,  then  the mass flow  through  the  valve 
w i l l  be j u s t  proportional  to  the  opening  area  of  such a throa t .  
Hence by maintaining a high  constant  pressure i n  the  reservoir ,  
a condition of Mach 1 i s  always  obtained a t   t he   t h roa t   r eg ion .  

Let   r*   be  the  radial   posi t ion  of   the  throat  from t h e   v i r t u a l  
cone o r ig in   a s  shown i n  Figure 3 .  The cone region  between  r* and 
rc may be  considered  as   the  t ransi t ion  region between the  flow 
condi t ion   in   the   th roa t  and the  acoustic  region  of  the  cone. Thus 
f o r  r > rc the  acoustic  approximation  underlying  the  preceding 
analysis  i s  val id .  A s  previously  indicated,   a l l   geometr ical  
dimensions i n  the cone  region  between  r* and rc are  small  compared 
to   t he  minimum wavelength  of  interest .  Thus t h e   f l u i d  dynamic 
analysis  i n  the throat  region  can be conducted t o  a f i r s t  approx- 
imation  as a sequence  of  steady  state  f low  field  calculations 
throughout  the wave period  except  for  the  short   t ime  interval 
c lose   t o  7 = 0 and T = T o .  Such an approximation w i l l  more e a s i l y  
allow a physical  understanding of t he   r ea l  system. 

A t  any given  instant  of  time  during  the wave period,  the  f low 
i s  supersonic downstream of   the  throat .  A shock in te r face  w i l l  be 
found a t  a given  distance ri as   indicated i n  Figure 3 where the 
flow becomes subsonic. The posit ion  of  the shock in t e r f ace   a s  
shown i s  only  representative of a possible  location  since  such an 
in te r face  moves in   t he   duc t   a s  a function  of  the mass flow. O n  
the basis   of   s teady  s ta te   isentropic   one-dimensional   f luid dynamic 
consideration  the  supersonic  flow  region i s  described  by  the 
equations 

w = P i  u ri s = p l u  r l  r 2 ,  (1) 

. 
8 
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where S* i s  given  by Eq. ( 3 )  and a t  every  instant  of t i m e  w t he  
mass flow i s  considered  constant  throughout  the  region  r*<r<r . 
In  Eqs. (1) and ( 2 )  the   subscr ip t  1 i s  used to   denote   the  densi ty  
and velocity  upstream  of  the  shock  interface. The local   value 
of Mach  nurriber i n   t h i s   r eg ion  i s  given  by 

C 

and the  condi t ion M = 1 determines  the  required mass flow r a t e  
as  indicated  by Eq. ( 3 ) .  Since  the  s imulator   faci l i ty  i s  b u i l t  
with a relatively  small   divergence  angle i n  the  duct ,a   plain.shock 
can  be assumed t o   e x i s t   a t  r = r . Hence t h e   c l a s s i c a l  shock 
wave equations  can be used t o  de&ermine  the  change in   p rope r t i e s  
of  the  flow  field  gas  across  the  shock. I n  p a r t i c u l a r ,   i f  M 
denotes  the Mach number immediately  upstream  of  the  shock 
i n t e r f a c e   t h e   r a t i o  of the  stagnation  pressure pw  upstream of the  
shock to   the  s tagnat ion  pressure p downstream of   the shock i s  
given by 

1 

li 

0 

Y 
Y - 1  

Equation ( 5 )  i s  w r i t t e n  with  the  assumption  that  the  pressure 
i s  the  ambient pressure i n  the   acous t ic   sec t ion  of the  cone, 

and i s  assumed to  be  constant  during  the  period of time  the w a ~ r ~  
propagates  in  the  horn.  

The s e t  of Eqs. ( l ) ,  ( 2 ) ,  (4 )  and (5)  a re   the   bas ic   opera t ing  
equations  needed t o  design  the m a s s  control  valve  used  on  the 
s imula tor   fac i l i ty .   Spec i f ica l ly ,  by choosing  the  pressure p, of 

10 
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the   reservoi r ,  E q .  ( 5 )  w i l l  provide  the  value  of  the Mach nu&er 
i n  the  supersonic  flow a t   t h e  shock in te r face .  Then,  by means of 
Eq. (4)  t he   dens i ty   r a t io  p,/p can  be  obtained. Then using 
Eq. (1) and (3)  the   value  of   tke  throat   area S* a s  a function  of 
w can  be computed. Equation ( 2 )  with  the  value  of S* then  can  be 
used t o  determine  the  position r of  the shock in te r face .  I t  may 
be   no ted   tha t   as   the  mass flow  increases,the shock in te r face  i 

moves downstream reaching a maximum distance when the mass f l o w  
r a t e   a t t a i n s  i t s  maximum value.   Ultimately  the motion  of the 
shock in te r face   cont ro ls   the   r i se   t ime  capabi l i ty  o f  the  device. 

A sample calculation  of  the  various  parameters i s  b r i e f l y  
given  below. 

Assume a driving  pressure  of 10 atm.,  then  via E q .  ( 3 )  the 
area S* corresponding t o  

C 

s* = 
C 

for  a = 330 m/sec, p w  - 
0 

- 

aopm = 4050 kg/m sec 
2 

V I 1  

posi t ion r i s  
C 

10 po = 1 2  - 2 5  kg/m 3 

Hence S*  = 1.728 - - - 4 . 3 2  x 10 w. W -4 
C 4050 

From Eq. ( 1 7 )  - 

where S i s  the  area of 
the end  opening. 0 

11 



Assume the   cond i t ions   a t   t he  tes t  sect ion (S ) t o  be, 
0 

S = 5.76l-2 (8x8 ft)  
0 

r = 3 0 m  
0 

T = .1 sec 
0 

w = .42  kg/sec max 

Then, S""2.6 cm" . 
A number of  possible  design  configurations were considered 

for   the  mass control  valve.  The basic  requirements  for  such a 
valve  are   that  it can  pass a large mass flow a t  peak  opening, 
t h a t   t h e   t r a n s i t i o n  from no flow t o  flow  can  be  sharp and t h a t  
the  f low  characterist ics can  be t a i l o r e d   e a s i l y  so tha t   t he   r e -  
quired mass f low  prof i les  can  be obtained.  Although  the  slide 
valve mechanism used i n  t h e   p i l o t   f a c i l i t y  produced the  required 
mass f low  prof i les ,   the  amount of mass that  could  be  passed 
through  such a valve i s  highly  limited  because  of i t s  one- 
dimensional  character. I n  addition,  except i n  t h e   f u l l  open  con- 
d i t ion   the   o r i f ice   "appears"   as  a f r e e   j e t  and thus  generates a 
s ign i f icant  amount of  background  noise.  Other  configurations  that 
were considered were a moving b e l t  and a cam valve  as   wel l  as a 
f lex ib le   wal l   type   o r i f ice .  However, the  requirements  for  large 
mass flow  and suitably  shaped  nozzle  to  reduce  jet   noise  ult imately 
led  to   the  design of a plug  valve. 

I n  Figure 4 the  schematic  of  this  valve i s  shown. Three  basic 
types  of  operation  are  possible i n  t h i s  arrangement. First, the 
valve  pint le  or plug may be programmed t o  open  and then  close 
symmetrically  with a constant   veloci ty  and hence the  mass flow 
character is t ics   are   determined by the   p ro f i l e  on the  plug. A 
second mode of  operation  allows  that   the  velocity of the  pis ton 
can be  varied i n  a predetermined  fashion and t h a t  a l i n e a r  mass 
f low  character is t ic  i s  always  established on the  plug. A t h i r d  
p o s s i b i l i t y  exists which  does  not  require  reciprocating  motion 
during  the  operation. A plug can be  constructed  with  both an 
increasing and decreasing  conical  section  such  that   with a s ing le  
cons tan t   ve loc i ty   s t roke ,   the   en t i re  mass flow  profile  can  be 
obta ined .   This   l a t te r   conf igura t ion ,whi le   the   eas ies t   to   ob ta in  

12 
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SCHEMATIC OF PLUG  VALVE 



from a dynamic point  of view presents  an obs t ruc t ion  downstream 
o f   t he   son ic   o r i f i ce  which may generate   excessive  noise   or  i n t e r -  
fere  with  the  f low. 

For the   i n i t i a l   ope ra t ion   o f   t he   dev ice   t he   f i r s t  mode 
configuration was chosen. To obtain  the nominal N-wave, a 
parabol ic  mass ' f low  charac te r i s t ic  i s  needed. In   t he   cy l ind r i ca l  
geometry  of  the  plug  valve  this  consists  of a l inear  tapered  cone, 
assuming tha t   the   p lug  moves a t   cons t an t   ve loc i ty .  The bas i c  
dimensions  of  the  plug  valve w e r e  developed  by  the  conditions 
es tab l i shed  i n  the  analysis  and are   such   tha t   for   the   longes t  
anticipated  wavelength a sui table   overpressure  of  2 t o  3 lbs. per 
square  foot  can be obtained. Under these  condi t ions  the mass flow 
i s  on the  order  of 50 lbs .  /sec a t   t h e  maximum opening  of  the  valve. 
With nominal pressure  of 1000 p s i  i n  the  plenum, a 2 "  o r i f i c e  i s  
r equ i r ed   fo r   t h i s  mass flow.  (See  Figure 5 for  scale  drawing.) 

For  any of t he  modes of operation  outlined  above, it i s  
des i r ab le   t ha t  no unbalanced  pressure  loading  exist on the  plug 
so tha t   t he   d r iv ing  power requirement  reduces  to  that  needed  only 
f o r   t h e   i n e r t i a l  component.  Note t h a t   i f  no compensation for   the  
varying  load on the  plug i s  made, with a 1000 ps i   p ressure  i n  t he  
plenum, an unbalanced  force  on  the  plug  amounting t o  6000 lbs.  can 
be developed.  This  load would vary from 0 t o   t h e  maximum value  as  
a function of the  opening  of  the  valve.  This i n  t u rn  would in- 
f luence   the   cons tan t   ve loc i ty   charac te r   requi red   to   ob ta in   the  
des i r ed   p ro f i l e .  To reduce  the  effect  of this   varying  load,  a 
compensating  element was in t roduced   in to   the   rear   sec t ion   of   the  
plug  valve.  This  compensation i s  obtained by taking a sample 
pressure from the  edge of  the  tapered  plug and t r a n s m i t t i n g   t h i s  
pressure   to  a compensating  piston  located  behind  the  driving 
p is ton .  I n  p r i n c i p l e   t h i s  system w i l l  reduce  the  var ia t ion  in  
load  by a factor   of  1 0  over   the  ent i re   range  of   s t roke.  

The dr iving  force  suppl ied  to   the  plug  shaf t  i s  obtained  via 
a hydraulic  system. The hydraulic  system i s  composed of two 3 
cubic  foot  tanks,   each  containing  water  with  soluble  oil  which i s  
used as   the  hydraul ic   f luid.   Since  the demand on the  hydraul ic  
system i s  basical ly   of  an  impulse  nature  the  tanks  are  al ternately 
pressurized and the  re turn from the  hydraul ic   pis ton would be 
directed  to  the  non-pressurized  tank. The log ic   fo r   t h i s   a r r ange -  
ment i s  obtained  using  large check valves  and i s  shown schematically 
in   Figure 6 .  The fundamental power capac i ty   o f   th i s   hydraul ic  
system i s  l imited  only by the  size  of  the  hoses  used  to  connect 
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FTGURE 5: SCALED DRAWING OF PLUG  VALVE (1/4" = 1" ) 
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the  valving. The in i t i a l   con f igu ra t ion   has   capab i l i t y   o f  50 gals .  
per  minute a t  3000 psi   hydraul ic   pressure which  roughly  corresponds 
t o  50 horsepower. 

From the  schematic  in  Figure 6 it can  be  seen  that  the 
pressure  output  of  the  hydraulic  system  can  f low  through  either 
of two valves,  v-11 o r  v-12, and into  ,the  plug  valve  driving 
pis ton.  The choice  of  valve  depends upon the  type  of  operation: 
whether it be manual or  high  speed programmed. .To obta'in  the 
constant   veloci ty  of t he   p i s ton   a s   r equ i r ed   fo r '   t he   i n i t i a l  mode 
of operation, a r e s t r i c t i n g   o r i f i c e  i s  placed, . in   , the   hydraul ic  
l i n e  so t h a t   t h e  major drop i n  pressure  occurs. 'across this o r i f i c e  
so tha t   t he   f l ow  r a t e  i s  essent ia l ly   cons tan t  and ' thus .   the   p i s ton  
displacement i s  l inea r   w i th  t i m e . ' '  The basic'-mechanicaT.  operation 
of t h i s   va lve  was highly  successfu1, 'up  - to  periods-  as  short   as 
30 msec and as  long  as 1 /2  sec. 

The original  air   supply  requirement was not   s ized   to  meet 
the demands of  the  long  wavelength  high  pressure  flow  condition. 
During  such  operations  of  the  valve, when the  plug i s  s ign i f i can t ly  
open,  the plenum pressure which i s  intended  to  be  constant shows 
a s ignif icant   drop  as   indicated by the  lower  trace  of  Figure 7 .  
The posit ion  of  the  plug i s  indicated by the  upper   t race  of   this  
f igure.  Note t h a t   t h e   f i r s t   i n c h  of t rave l   o f   the   p in t le  was 
designed  not  to  allow mass flow i n  t h i s   i n i t i a l   c o n f i g u r a t i o n  so 
that   non-l inear   effects   associated w i t h  the  acceleration  of  the 
plug would be  eliminated. The resu l t ing  N-wave produced  conse- 
quently  has a non-ideal  behavior due to   t he  changing plenum pressure 
as  the  valve  opening  changes. 

A second diff icul ty   with  the  plug  valve i s  the   t r ans i t i on  
from no flow to  flow which should be sharp  to   obtain a r ap id   r i s e  
time. Due to   t he   f i n i t e   t h i ckness   o f   t he   o r i f i ce   p l a t e ,   t he re  i s  
always  an  inherent  uncertainty i n  the  f low  t ransi t ion.  To improve 
th i s   s i t ua t ion   t he   t h roa t   t h i ckness  can  be  reduced and an addi t ional  
s t e p  can  be made  on the  plug  to  provide a more r ap id   t r ans i t i on  of 
the   f low  dur ing   the   in i t ia l   s t rok ing .  Some t y p i c a l   r e s u l t s   a r e  
shown i n  Figure 8 for   the  condi t ions  indicated.  

Another  feature  of  the mass flow  control  system i s  t h a t  of 
t he   j e t   no i se  produced a t   t h e ,   o r i f i c e .  For many types   o f   t es t s ,  
t h i s   i n t e r f e rence  i s  of no consequence. However, f o r  some physo- 
acoust ic   tes t ing,   the   perceived  noise  i n  the  frequency  range 
corresponding t o   t h e  j e t  noise,  i s  highly  noticeable.  I t  may be 
noted  that  the  frequency  spectrum of the j e t  noise compared with 



Time Scale : 

1 divis ion  equals  
0.1 seconds 

Upper t race  indicates   posi t ion  of   valve 
pintle  with  each  division  corresponding 
t o  about 1 inch. 

Lower t r ace  i s  a measure of the plenum 
pressure  with  each  division  representing 
about 200 p s i   w i t h   t h e   i n i t i a l  (and f i n a l )  
pressure  about 400 p s i .  

FIGURE 7 - PLENUM PRESSURE RECORD 
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T i m e  Scale: 

1 division  equals 
0 . 1  seconds 

a: Moderate r i s e  time - long wave. 
About 3 psf  overpressure. Note tha t  
the  valve i s  f u l l  open about 75 m s  
before  the  center of wave because  of 
the  t ransi t  t i m e  down the  .duct. 

Time Scale: 

1 division  equals 
0 .1  seconds 

b: Faster rise time. Peak overpressure 
about 10 psf. 

Time Scale: 
1 division  equals 

20 millisec. 

c: Expanded trace  of a f a s t   r i s e  time wave. 
Signal above has been e lec t r ica l ly   f i l t e red   to  
reduce jet   noise.  Peak overpressure  about 5 
psf and r i s e  t i m e  about 2 milliseconds. 

FIGURE 8 - SOME TYPICAL I N I T I A L  RESULTS 
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the  frequency  spectrum  of  the fu l l   s ca l e   son ic  boom a r e   s i g n i f i -  
cantly  separated.  Hence it i s  l i k e l y   t h a t   a c o u s t i c a l   f i l t e r i n g  
added i n  the  duct  can  greatly  reduce  the j e t  noise prob,lem. A 
crude  attempt at   providing  such an . a c o u s t i c a l   f i l t e r  was made 
and  the  aesults,   while  not  perfect ,  showed promise. 

Cone Termination 

A s ign i f icant   por t ion   o f   th i s   research   pro jec t  was devoted 
to   solving  the problem  of  acoustic  reflections from the open end 
of  the  conical  duct. While the  absorber i s  not  required  for  very 
short  wavelengths  such  as  those  used i n  sca le  model t e s t i n g ,  it 
is c l e a r   t h a t   f o r  long  wavelengths ( f u l l   s c a l e  booms) the 
re f lec ted   s igna l  from the  open  end  of the  duct w i l l  i n t e r f e r e  
with  the  outgoing  pressure wave generated by the  source and com- 
b ine   to   g ive  a resul t  which i s  not   representat ive  of   the  sonic  
boom signature.  B y  performing a sui table   analysis   of   the  wave 
propagation i n  and a t   t h e  end  of  the  duct, a unique  solution was 
obtained which permit ted  the  real izat ion  of  a small  absorbing u n i t  
which  would effect ively  cancel   a l l   of   the   wavelengths   of   pract ical  
i n t e re s t .   Th i s   ana lys i s  i s  presented below. 

The calculat ions  presented i n  Appendix A assume t h a t  no 
r e f l ec t ion   occu r s   a t   t he  end of  the cone  which would make the 
f-unction Q2 vanish i n  Eqs. ( A 4 )  and (A5) . I n  p r a c t i c e ,   t h i s  con- 
dition  cannot  be  achieved  exactly and pa r t i cu la r   a t t en t ion   has  
been  given  to  the  problem  of  reducing  the  valve  of h,  a t   l e a s t  
i n  the  range  of  frequencies  of  primary  interest. 

I n  genera l   the   phys ica l   t e rmina t ion   a t   the  end  of the cone 
can  be  represented by an acoust ical  impedance ZCU. By Figure 1 
it can  be  seen  that a t  r = r corresponding  to  the end of  the 
conical  duct Eqs. (A4) and (85) lead  to:  

-- i w  ro  
a aZ ( w )  
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The specif ic   condi t ion  that   there   be no r e f l ec t ed  wave i s  
represented when @2 i s  se t   equa l   to   zero .  Then Z ( w )  is .  given by 
the  complex 

From th is   equa t ion  it i s  c l e a r   t h a t  it i s  impossible  to  terminate 
the cone a t   t h i s   p o s i t i o n   w i t h  a simple  absorbing  material which 
would correspond to   on ly  a real   value  of Z(u,) .  

I n  agreement with Eq. ( A 6 ) ,  Eq. ( 7 )  shows t h a t   t h e   r a d i a l  
v e l o c i t y   a t  r = r i s  composed of two te rms ,   the   f i r s t   be ing  
proport ional   to  tf?e pressure and the  second  being  proportional 
to   the   t ime  in tegra l   o f   the   p ressure .   This  second t e r m  cannot 
be  neglected i n  the  low frequency  range when - wTo i s  less   than   or  
equal   to  1, i . e . ,  when the  parameter i s  define8 by 6 i n  Eq. (A12)  
for  r - r i s  of  the same order   or   larger   than u n i t y .  

0 

The f i r s t .  + e r m  on the   r i gh t  hand s ide of Eq. 7 corresponds 
t o  a conventional sound d iss ipa t ion  mechanism while  the  second 
term  represents  the  inertial   behavior due to   t he  motion  of  the 
mass of  gas. These considerat ions  suggest   the   possibi l i ty   of  
cance l ing   the   re f lec ted  wave by means of a termination which would 
consis t   of  a moving absorber  as  represented  by a scheme of 
Figure 9 .  I n  th i s   f igure   cons ider   tha t   the   p i s ton  i s  porous and 

Piston  of 
masduni t   area = U 

Constant 
a re  a 

FIGURE 9. - SCHEMATIC OF MOVING ABSORBER CONCEPT 
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i s  free to  move along  the  axis  of  the cone wi th   wa l l   f r i c t ion  R 
and  an e l a s t i c   r e s to r ing   fo rce  shown by the  spr ing K which i s  used 
to   es tab l i sh   the   equi l ibr ium  pos i t ion .  Assume tha t   t he   d r iv ing  
force on the   p i s ton  i s  due to   t he   v i scous   e f f ec t   o f   t he   a i r   pas s -  
ing  through  the  porous  piston. Then the  equation  of  motion  of 
the  pis ton can  be w r i t t e n  i n  the form of 

= u -  + Rv + K s v   d t  av 
a t  

wIiere v i s  the  pis ton  veloci ty ,  U and K a re   the  mass and spring 
constant  per u n i t  area  respectively,  R1 i s  the   res i s tance  which 
corresponds  to  the  viscous  drag mechanism i n  the  porous  piston, 
a lso  per   uni t   area.  The effect   of   mechanical   f r ic t ion i s  
included  as a f a c t o r  R which i s  also  given  as   equivalent   res is tance 
per   uni t   area.  

By means of Eq. (8) and the  boundary  conditions  expressed by  
Eq. (6), the  functions @,. and Q2 of  the  outgoing and r e f l ec t ed  
waves are  given by 

i w  r 
1 0 -- 

\ 0 =[% - a + 1 + k K J Q 2  e a 
R + i w U  + - 

1 w  

I n  an idea l   s i t ua t ion  where no mechanical f r i c t i o n   e f f e c t s  
e x i s t  (R = 0) and no e l a s t i c   f o r c e  i s  used to   main ta in   the   equi l i -  
brium posi t ion K = 0 ,  then Eq. (9) w i l l  provide  the  values  of 
viscous  res is tance and mass per u n i t  area  for   the  condi t ion % = O  
i f  
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In   pract ice   the  value  of  K can  be  chosen  as  small as required 
o r  e l imina ted   i f  a manual reposit ioning i s  done after  each  opera- 
t i on  of the  s imulator .  And, by careful  design,  the  mechanical 
resistance  can be made small compared to   the   v i scous   res i s tance  
so t h a t   t h i s   q u a n t i t y  becomes only a per turb ing   e f fec t .  I n  order 
to   evaluate   the  s ignif icance of  real   spr ing  constant  and r e a l  
mechanical f r i c t i o n ,   t h e  complete  solution i s  given by Eq. (11) 

2iw r 
a 

0 -- 
i a ( r  p w 2  + i w R )  % e  

%. ( w )  = 
0 0 0  

0 

2 i r  

where w i s  the  angular  resonant  frequency  of  the  piston  given  by 
0 

* 0 = e  

I f   bo th  K and R a re   suf f ic ien t ly   smal l ,  one obtains a re f lec ted  
pressure  signal p ( t )  a t  r = r which i s  given i n  terms  of  the in-  
cident  pressure prby 0 

Thus, i n  the  par t icular   case  of   the  N-wave prescribed by 
~ 

E q .  (A8), Pr a t t a i n s  i t s  maximum value a t  t = 7 which i s  given 
by 

0 

2 - 
'r 1 

'e 

a r  
"" 
- 0 (W 7 ) "  +-(?) 

24  r 0 0  1 2  r R1 
0 

which i s  va l id   as   long   as   the   ra t io  R/R1<<1.  Within  the  funda- 
mental error   l imitat ions  of   this   absorber   technique which occur 
at  the  very  long  wavelengths,  as  indicated by the   in tegra l  
expressions of E q .  (13) , t h e  moving piston  concept  as a useable 
end termination  has  the  advantage of being a completely  passive 
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arrangement.  After a su i t ab le  matching or  tuning  has  been 
achieved,  almost  complete  cancellation  of  the  reflected wave 
s igna l  can be accomplished. 

In   o rder   to   reduce   the   theore t ica l   requi rements   o f   th i s  
absorber   into a prac t ica l   device ,  an inves t iga t ion  was undertaken 
t o  de te rmine   the   su i tab i l i ty   o f   var ious   mater ia l s   to   se rve   as   the  
porous  piston.  Ideally,   the  material  would exhib i t  a flow resist- 
ance  which i s  constant  over  the  range of f low  ve loc i t ies  which 
w i l l  e x i s t  i n  the   s imula tor ,   fo r   ins tance ,  up t o  200 centimeters 
per  second. I t  was a l so  deemed important i n  view of  the  uncer- 
t a i n t y  i n  the  measuring  techniques,   to  be  able  to  vary  the  f low 
res i s tance  by simply  adding o r  removing layers   of   mater ia l .  The 
value  of  the  distributed mass, as   required by Eq. (10) was con- 
veniently  large (500 l b s )  so tha t   t he   r equ i r ed   r i g id   s t ruc tu re   t o  
hold  the  res is tance  mater ia l   could-be b u i l t .  

However, the  mater ia l  which  would produce  the  required  flow 
resis tance,   as   given by Eq. (10)  was not so readi ly   obtained 
or  i t s  signatures measured. Specif ical ly ,   the   f low  res is tance 
R1 can  be w r i t t e n  i n  terms  of  the  pressure  drop  divided by the 
ve loc i ty   as   g iven  by 

R1 = 4 2  
U 

where Ap equals   the   p ressure   d i f fe ren t ia l   across   the   absorber  
per cm" and u equals  the  velocity  of  the  f low  entering  the ab- 
sorber i n  cm per  second. The value of R1 from Eq. (10) -  for   the  

1 R  = dyne/cm2 i s  approximately 40 R / s .  
aY cm/sec aY 

A var ie ty   of   mater ia ls  were t e s t e d   i n  a smal l   ( l 'k2"   t es t  
section)  continuous  flow open c i r c u i t  wind t u n n e l .  The tunnel 
was fabr ica ted   o f   luc i te   shee ts  and was equipped  with  sufficient 
pressure  taps   to   provide  the  necessary  data   for   mater ia l   evalua-  
t i o n .  The flow  velocity was varied by altering  the  speed  of  the 
motor 'dr iven  centr i f ical   b lower.   Pressures  were  measured with 
inclined  water manometers. Mass flow was determined by using a 
technique which consisted  of  measuring  the  time  required  to f i l l  
a spec i f i c  volume. 

Various  fabrics made of  both  natural  and syn the t i c   f i be r s  
were t e s t ed   a s   we l l   a s  samples  of 1/8" Hexcel honeycorrib. In  
general ,   within  the limits of  accuracy  obtainable  with  the 
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equipment,  synthetic  fibers  provided  the most near ly   l inear   (with 
respec t   to   ve loc i ty)   f low  res i s tance   charac te r i s t ics .   Severa l  
representative  curves  are  presented i n  FigureslOand11. I n  order 
t o   a s ses s   p rope r ly   t he   r e l a t ive   l i nea r i ty   (o r   l ack   t he reo f )   t he  
s ign i f icant   da ta  was normalized at   the   value  corresponding  to  
60 cm/sec and r e s u l t s   a r e  shown in   F igure12 .  

The mater ia l   se lec ted   as  a r e su l t   o f   t hese  tes ts  f o r   i n i t i a l  
use i n  t h e   f a c i l i t y  was 1 / 2  inch  thick  f iberglas   blanket  
(0.75 lbs/f t3   densi ty)  . It may be  noted from the  data   presented 
tha t   for   the   ve loc i ty   range   of  60 t o  150 cm/sec the  f low  resistance 
of   th i s   mater ia l  i s  approximately  proportional  to  the  thickness, 
hence the  resistance  of  the  porous  piston  can  be  easily  modified 
by changing  the  thickness  of  the  f iberglas  that  was in s t a l l ed .  
Th i s   s e t   o f   des i r ab le   cha rac t e r i s t i c s   o f   t h i s   ma te r i a l  made it 
the   i n i t i a l   cand ida te   t o   be  used i n  the  absorber   for   this   s imula-  
t o r   f a c i l i t y .  A schematic of the   ac tua l  moving absorber i s  shown 
i n  Figure 1 3  . 

The resul ts   achieved by us ing   t h i s  moving porous  piston 
technique may be  seen from Figure 14. The upper  picture shows 
an incident   pressure wave and the  subsequent  reflections  obtained 
when the  end of  the  conical  duct i s  exhaus t ing   d i rec t ly   to   the  
atmosphere. The lower  picture   i l lustrates   the  a t tenuat ion  achieved 
with a s imilar   input   pressure wave af te r   the   absorber  was i n s t a l l e d  
a t   t h e   e x i t  of  t h e   f a c i l i t y .  I t  i s  c l e a r  from t h i s   d a t a   t h a t  an 
order  of  magnitude  reduction  of  reflected  energy is  obtained  even 
by u s i n g   t h i s   i n i t i a l  ’‘untuned” design. 

TECHNIQUES FOR U S I N G  THE FACILITY 

The facil i ty  described  has  been  demonstrated and  does  indeed 
simulate a sonic boom. I t  fur ther   incorporates   features  which 
make it a f lexible   device i n  varying  the  parameters   of   interest  
over a substantial  range.  This  section w i l l  f i r s t   d e s c r i b e   t h i s  
capabi l i ty  and then show  how the   fac i l i ty   should  be used i n  con- 
ducting  various  sonic boom research  s tudies .  

Based on tests  to  date  the  following  performance  ranges 
should  be  available i n  t h e   f a c i l i t y .  
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Without  Absorber 

With Absorber 

Each division  equals 0.1 seconds. The moderate 
r i s e  time i s  programmed by the mass flow  control 
valve. 

FIGURE 14 - DEMONSTRATION OF THE ABSORBER 
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Simulator  Capability 

Peak Pressure  Level 

Wavelength 

Period 

Rise T i m e  (minimum) 

Repetit ion Rate  (Typical) 

Model Scale 

Maximum Test  Station Area 

I t  may be  noted  that   the " typica l"  

up t o  100 psf 

1/4 f t  - 500 f t  

300 wsec - 0.5 sec 

- 1 millisecond 

up t o  60/hr 

1:l t o  1 O O O : l  

8 feet   square 

r e p e t i t i o n   r a t e  i s  a 
function  of  the  air   compressor  supply  capabili ty.   Actually 
multiple booms separated  by  tenths  of  seconds  can  be  produced 
if required.  Not a l l   t h e  above have  been  actually  demonstrated 
over  their  complete  ranges,  but no d i f f i c u l t y  can be  seen i n  
doing so. 

Many appl ica t ions   o f   the   fac i l i ty  can  be  handled  without 
any addi t ions   o r   modi f ica t ions   to   the   fac i l i ty .  For instance,  
Figure 1 5  shows a t e s t   s e t  up for  measuring  the dynamic response 
of   l a rge   s t ruc tura l  models. I n  a s imilar  manner the   e f f ec t s  of 
t e r r a i n  on sonic boom signatures can also  be  s tudied  with  scaled 
t e r r a i n  models. 

With a m i n i m u m  modification  the  set  up shown i n  Figure 1 6  
can  be  used t o   t e s t  window response. Knockout sec t ions   ex is t  
i n  the   s ide   wal l s  of t h e   f a c i l i t y  which w i l l  permit  such a s e t  
up t o  be made. 

Figure 1 7  shows a t e s t   s e t  up for  making psychoacoustic and 
o the r   s tud ie s   u t i l i z ing  a f u l l   s c a l e  room b u i l t   i n t o  a short  
extension  of  the  present  horn. 

Atmospheric e f f e c t s  on sonic boom can  be  investigated by 
producing  thermal  gradients and thermal  turbulence  using  heaters 
mounted in   t he   f l oo r  of the  horn.  Turbulent  airstreams  can  be 
produced by in t roduc ing   j e t s  normal t o   t h e  two ver t ica l   wal l s  
of  the  horn. 
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The foregoing  represent  areas  of  current  concern and 
indicate   the  approaches  that   could  be  used  to  employ th i s   t ype  
of  simulation  for  studies  of  these  problems. 

SUMMARY AND CONCLUSIONS 

The primary  purpose  of t h i s   r e sea rch  program i s  to  provide 
the  fundamental  relationships of the  physical  parameters 
important  for  this  type  of  instrument, and t o  examine the po- 
t e n t i a l   s o l u t i o n s   t o   t h e   r e f l e c t e d  wave problem. I n  support  of 
t h i s   a c t i v i t y  a f a c i l i t y  was designed  using  the  cr i ter ia  
es tabl ished i n  the  analysis.  Pertinent  drawings  are  included 
a t   t h e  end of t h i s   s ec t ion .  The actual  device,  extending more 
than 100 f e e t ,  was constructed  with an appropriate mass flow 
control  valve and was equipped  with a l l   t he   r equ i r ed   h igh  
p res su re   a i r  and hydraulic  systems  essential   for  operation. 

After  the  design  concept  of  the moving piston  type  absorber 
was conceived  and  formulated,  research was conducted t o  examine 
the  mater ia ls  and techniques  required  to  reduce  the  concept  to 
r e a l i t y .  The use  of th i s   pass ive  end termination  eliminated  the 
requirements  for a more sophisticated  servo-operated mass control  
valve,  which was in i t ia l ly   contempla ted .  

A n  extensive program was devoted to   ob ta in ing   t he   r equ i s i t e  
mater ia ls   for   the moving absorber ,   a f te r  which a prototype  design 
was constructed and tes ted .  The i n i t i a l   r e s u l t s   d i s c u s s e d  i n  
the  sect ion on Cone Termination  indicate  that  the  basic  concept 
is ,   indeed,   successful  and the  analysis   of   that   sect ion  indicates  
the   in t r ins ic   smal l   e r ror   for  nominal  wavelengths. 

A s e r i e s  of more than 300 t e s t s  were  performed t o   e s t a b l i s h  
the  behavior  of  the  various  systems. These tes t s   inc luded   qua l i -  
ta t ive  examinat ion  of   tes t  zones  and t h e   s u i t a b i l i t y   o f   t h e  wave 
generated  for  laboratory  experiments. 

The resul ts   thus  far   obtained  are   basical ly  i n  agreement 
with  the  theory. However, some departures from the  simple  theo- 
retical   operation  should  be  noted. I t  may be  seen from the   r e su l t s  
presented,   that  i n  o rde r   t o   ob ta in   t he   r ap id   r i s e  t i m e  of  Figure B C ,  
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an addi t iona l   s tep  was added t o   t h e  mass f low  prof i le .  While 
'this  technique was success fu l ,   t he   de t a i l s  have not   been  ful ly  
explored. Second, a s  w a s  pointed  out i n  the  sect ion GASL-NASA 
SIMULATOR FACILITY, t he  plenum pressure  in   operat ion was not 
maintaine'd  constant  for  large  openings  of  the  plug  valve.  This 
was due, i n  pa r t ,   t o   t he   ac t ions   o f   t he   va r ious   l imi t ing   o r i f i ce s  
and the  interactions  of  the  upstream  regulator  system. The 
detailed  requirements needed to   maintain a constant plenum 
pressure  for   widely  varying  f low  ra tes  i s  of  significance  es- 
pec ia l ly  i n  considerations of l a r g e r   s c a l e   f a c i l i t i e s .  

A thi rd  feature   of   the   present   . s imulator  i s  that   of   the  
superimposed " j e t "   n o i s e   t h a t  i s  generated by the  source. While 
it i s  c l e a r   t h a t   f o r  many types   o f   t es t s   th i s   no ise  i s  not  import- 
ant,   the  use  of  the  simulator  for  psychoacoustic  studies would 
require  some reduction of t h i s   f a c t o r .  I t  would appear  promising 
t h a t  such a reduction can be obtained since the  frequency  spectra 
of  the j e t  noise and the  sonic boom are  well   separated,  and i n  
f a c t  some prel iminary  s teps   that  were taken  indicate   that  sub- 
s t a n t i a l  improvement i s  possible.  
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APPENDIX A 

DERIVATION OF EQUATIONS GOVERNING 

THE OPERATION O F  THE GASL/NASA SIMULATOR 

Assuming the  conical   duct   as  shown i n  Figure A 1  with  or igin 
a t  0 ,  consider a spherical  wave propagating i n  the   pos i t ive  
direction  with  each  variable a function  of t i m e  and r a d i a l  co- 
ordinate.  I n  the  region  of  the cone close t o  t he   o r ig in ,  a la rge  

FIGURE A1 - CONICAL DUCT NOMENCLATURE 

flow  velocity and high  pressure i s  generated t o  drive  the 
pressure wave down the  tube.  I n  t h i s  small. region  the  flow  pro- 
pe r t i e s   a r e   e s sen t i a l ly   desc r ibed  by c l a s s i c a l   f l u i d  dynamic 
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considerations.  I n  the  large  port ion  of   the  cone,   f low  f ie ld  
v e l o c i t i e s  and pressure  changes  are s m a l l  enough to   a l low  the   use  
of  the  acoustic  approximation. Thus the  governing  equation  for 
the  pressure i s  

The flow f ie ld   ve loc i ty ,   u ,  i s  r e l a t e d   t o   t h e   p r e s s u r e  6 by 
-b 

a u  
P o  = - 3P 

For  propagation  with  spherical symmetry, Eq. ( A l )  becomes 

The general   solution  of Eq.  (A3) may be w r i t t e n  i n  the  form 

where the   f i r s t   t e rm  r ep resen t s  a wave which propagates   in   the 
pos i t ive   d i rec t ion  of the  var iable  r ,  and the second t e r m  
represents  a  wave propagatinq  towards  the  origin  of  the  cone. 
I f   t he  cone  can be b u i l t  so   as   to   completely  e l iminate   the  ref lec-  
t i o n   a t   t h e   l a r g e  end of the  cone,   the   coeff ic ient  @2 i n  Eq. ( A 4 )  
i s  then  equal   to  0 and fo r   t h i s   ca se   on ly   t he   f i r s t   t e rm i s  
required  to   descr ibe  the wave pressure i n  the  duct.  

Assuming spher ica l  symmetry, Eq. ( A 2 )  shows that   the   f low 
f ie ld   ve loc i ty   reduces   to   on ly   the   rad ia l  component, u . By  com- 
bining Eqs. ( A 2 )  and (A4) the  complete  integral  equation  describing 
the   r ad ia l   ve loc i ty  can  be  written 

r 
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The general  Eq. (A5) can be  solved once the   acous t ica l   p roper t ies  
of  the  large end of  the cone are   specif ied and the  dr iving mech- 
anism i s  prescribed which w i l l  p e r m i t  evaluation of the  boundary 
conditions and allow  the  computation  of  the two functions $& and - 

Consider   the   case   tha t   the   re f lec t ion   a t   the   l a rge  end of 
t he  cone i s  eliminated and  hence % i s  equal   to   zero.  Then by 
use  of  Eqs. (A4)  and ( A 5 )  a new equat ion  re la t ing u t o  may be 
wr i t ten  i n  the form of 

r 

where 

Thus,  assuming the   r e f l ec t ion  t o  be  eliminated, E q .  ( A 6 )  allows 
the  computation of mass flow which i s  required  to   obtain  the 
prescribed  pressure wave i n  any given  section  of  the  cone. 

For  example, assume a pressure wave a t   t h e   p o s i t i o n  r of 
the cone t o  be  an N-wave, which  can  be wr i t ten  i n  i t s  ideafized 
form as  

where 
r 
e 7 = t - -  

r a 
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H e r e  the   cons tan t  6, r ep resen t s   t he   i n i t i a l   p re s su re  jump a t  
7 ,  = 0 ,  corresponding t o   t h e   l e a d i n g  edge  of  the wave. Consider- 
i n g  still t h a t  no re f lec t ion   occurs  from the la rge  end of the 
cone,  the  pressure wave a t  any o ther   pos i t ion  r i s  given  by 

By v i r tue   o f  E q .  (A6) and (A10) the   f low  f ie ld   ve loc i ty .  
u i s  given  by r 

- 

"" "'r 'e re 7 7 7 - 
1 - 2 - + c - ( l - p  a r 7 7 

0 0 0 

a7 

r 
0 e = - -  

y'r From Eq. ( A l l )  the   funct ion - st rongly depends upon the  value 
6 which i s  r e l a t ed   t o   t he   d i s t ance  from the   o r ig in   a s   i nd ica t ed  
by E q .  (A12)  , s p e c i f i c a l l y   a t  a la rge   d i s tance  r such t h a t  E < < 1  
the  term  containing  the 5 i n  Eq. ( A l l )  i s  very  small compared t o  
uni ty ,  and thus 

y'r 
a 
" 

PO 

Conversely a t  s m a l l  d i s tances   o f  r such  that  5 >> 1, the  t e r m  
containing 6 becomes dominant i n  Eq. ( A l l )  except   for   values   of  
7 c lose   to   bo th  7 = 0 and 7 = 7 . I t  i s  i n s t r u c t i v e   t o   n o t e   t h a t  
a dis tance where e >> 1 corresponds to t h e   f a r   f i e l d   r e g i o n   i n  
the  propagation  of  an  acoustic wave. On the  other  hand, 22 1 
corresponds t o  the   near   f ie ld   reg ion  where the  flow  behaves 
e s s e n t i a l l y   a s  an incompressible  gas  with a ve loc i ty  u which i s  
inverse ly   p ropor t iona l   to  r". I n  the  range of large  values of 

0 

r 
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T which may be of   operat ional   interest ,   the   length  of   the 
f a c i l i t y  i s  such   tha t   a t  r = r the  value  of 6 i s  never  small 
compared with  unity.  

0 

0 

To examine the  mass flow  requirements  as  controlled by the  
sonic   o r i f ice ,   the   va lue   o f  w i l l  always  be  very  large compared 
t o  u n i t y ,  whence E q .  ( A l l )  reduces t o  

a 

except  for  values  of T 

y'r The function - a 
the  use  of 

i s  r e l a t ed   t o   t he  mass flow ra t e  w through 

which y ie lds   for   the   idea l  N wave. 

Again,   c lose  to   the  or i f ice  where 5 i s  large,  

7 

2 and the maximum value  of mass flow is found a t  T = - and i s  
given by 

0 

- 
'e 

W " - r n p o a  2 T 
max  4YpO e 0 

(A16a) 
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It  can  be  seen  that  for  the  major  portion  of  the  prescribed 
N-wave according  to  Eq.  (A14),  the  pressure i s  propor t iona l   to  
the   t rue   der iva t ive   o f   the  mass flow  which supports   the  basic  
concept  considered i n  t h e   p i l o t   f a c i l i t y   b u i l t   a t  GASL. 

Assume  now t h a t   a t  r = ro the mass flow  of a i r  i s  obtained 
v ia  a connection  through a sonic  area from a high  pressure 
reservoi r  and thus   the   s teady   s ta te  mass flow  through  the  valve 
i s  independent  of  the downstream condition which i s  given  by 

where a and p, are  the  speed of  sound and the  gas  density i n  the  
reservolr ,  and S*  i s  the  area  of   the   sonic   or i f ice .  c? 

If a l l   t h e  dimensions  of  interest i n  the   sonic   o r i f ice   a re  
small compared to  the  wavelength  corresponding  to  the maximum 
frequency  of  interest  i n  the  spectrum  of  the N-wave, then 
Eq. (A18) can  be  used to   descr ibe   the  new dependent  flow  rate 
due t o  a change i n  time of e i ther   the   th roa t   a rea  S* o r  a 
reservoi r   dens i ty ,  p,. Assume  now t h a t  p, i s  essent ia l ly   cons tan t  
during  the  time  that  the  valve  opens and closes   to   generate   the 
N-wave. To  obtain  the  complete  description,  the  effect  on the 
pressure wave due t o  mass flow  rate  function, Eq. ( A 1 6 )  i s  
required  to   obtain  the  ideal   pressure N-wave.  The previous  dis-  
cussion  suggests  that  we take  the dominant  term o f  E q .  ( A 1 6 )  t o  
be  the  prescribed mass flow rate  through  the  valve.  Assume then 
t h a t   a t  a posi t ion r = rc close  to   the  valve,   the   radial   veloci ty  
i s  given by Eq. ( A 6 )  and thus  the  resul t ing  pressure wave generated 
i n  the cone i s  given by 

and thus,  
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for 

o < T < T  
0 

r 

a Equation (A20) shows t h a t   f o r  T << - one has 
C 

PO PO r r  
C 

Thus at   the   beginning of the wave the  pressure  increases 
l inearly  with  t ime and as  previously  discussed  the  quantity 
may be  small compared with  uni ty .   Therefore ,   af ter   the  aTO 

par t ia l   t rans ien t   descr ibed  by Eq. (A22), Eq. (A20) reduces t o  

r 

For  values of T larger  than T the  pressure  signal i s  given  by 
0 

r 

a7 
and f o r  - <:..I 1 then Eq. (A241 reduces  to C 

0 

- - a r -- (T - T ~ )  'e Po"" e e  r C  

PO 
r - 

Figure A2 shows the  solution of the  function  described  by 
Eqs. (A20) and (A24) . It can be  observed  that  the  smaller  the 
value  of r /a7 the  c loser   the  actual   pressure wave w i l l  be to 
t he   i dea l  waveform described by Eq. (AB). 

c o  

NASA-Langley, 1969 - 2 CR-1378 
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